Endoscopic Mucosal Resection Devices
Effective, Efficient, and Less Invasive, Olympus Endoscopic Mucosal Resection Devices are the State-of-the-Art Treatment Solution

EMR — or Endoscopic Mucosal Resection — is fast proving to be one of the most promising techniques for the treatment of gastrointestinal lesions. A procedure that is both remarkably precise and minimally invasive, the possibilities of EMR have generated enormous excitement in the medical community. Now Olympus is making it easier for physicians to utilize this state-of-the-art treatment. Our lineup of Endoscopic Mucosal Resection Devices dramatically increase the versatility and efficiency of EMR while making the procedure easier to perform.

1. After spraying dye on the area where lesions are suspected, fit the distal attachment to the scope tip and secure it with medical elastic tape. If you’re using a wide oblique distal attachment with a rim, align the notch with the scope channel.
2. Advance the scope tip until it reaches the target area. Elevate the lesion by injecting sufficient saline into the target area.
3. Insert a snare through the endoscope’s instrument channel. While pressing the distal attachment against healthy tissue, use the suction function of the scope a little in order to pre-loop the snare along the circumferential rim of the distal attachment.
4. Suction the lesion into the distal attachment. Snare and ligate the suctioned mucosa.
5. Stop suctioning and observe the target site through the endoscope. Then activate the electrosurgical snare and resect the lesion.
6. Withdraw the snare. Draw the resected tissue into the distal attachment using the endoscope’s suction. Withdrawal of the endoscope and retrieval of resected tissue can be done simultaneously.
7. Spray dye on the resected area to confirm that no lesions remain.

Using a cap-mounted panendoscope, you can easily suction the area around a lesion, making it easier to effectively resect the target mucosa, regardless of its location, direction, or dimensions. Even flat lesions can be accurately targeted.

Golden Standard of EMR, using large-capacity distal attachment and diagnostic scopes

Endoscopic Mucosal Resection with transparent plastic Cap-fitted panendoscope

EMRC

EMR — or Endoscopic Mucosal Resection — is fast proving to be one of the most promising techniques for the treatment of gastrointestinal lesions. A procedure that is both remarkably precise and minimally invasive, the possibilities of EMR have generated enormous excitement in the medical community. Now Olympus is making it easier for physicians to utilize this state-of-the-art treatment. Our lineup of Endoscopic Mucosal Resection Devices dramatically increase the versatility and efficiency of EMR while making the procedure easier to perform.

Using a cap-mounted panendoscope, you can easily suction the area around a lesion, making it easier to effectively resect the target mucosa, regardless of its location, direction, or dimensions. Even flat lesions can be accurately targeted.

1. After spraying dye on the area where lesions are suspected, fit the distal attachment to the scope tip and secure it with medical elastic tape. If you’re using a wide oblique distal attachment with a rim, align the notch with the scope channel.
2. Advance the scope tip until it reaches the target area. Elevate the lesion by injecting sufficient saline into the target area.
3. Insert a snare through the endoscope’s instrument channel. While pressing the distal attachment against healthy tissue, use the suction function of the scope a little in order to pre-loop the snare along the circumferential rim of the distal attachment.
4. Suction the lesion into the distal attachment. Snare and ligate the suctioned mucosa.
5. Stop suctioning and observe the target site through the endoscope. Then activate the electrosurgical snare and resect the lesion.
6. Withdraw the snare. Draw the resected tissue into the distal attachment using the endoscope’s suction. Withdrawal of the endoscope and retrieval of resected tissue can be done simultaneously.
7. Spray dye on the resected area to confirm that no lesions remain.

Effective, Efficient, and Less Invasive, Olympus Endoscopic Mucosal Resection Devices are the State-of-the-Art Treatment Solution

EMR — or Endoscopic Mucosal Resection — is fast proving to be one of the most promising techniques for the treatment of gastrointestinal lesions. A procedure that is both remarkably precise and minimally invasive, the possibilities of EMR have generated enormous excitement in the medical community. Now Olympus is making it easier for physicians to utilize this state-of-the-art treatment. Our lineup of Endoscopic Mucosal Resection Devices dramatically increase the versatility and efficiency of EMR while making the procedure easier to perform.

Using a cap-mounted panendoscope, you can easily suction the area around a lesion, making it easier to effectively resect the target mucosa, regardless of its location, direction, or dimensions. Even flat lesions can be accurately targeted.

1. After spraying dye on the area where lesions are suspected, fit the distal attachment to the scope tip and secure it with medical elastic tape. If you’re using a wide oblique distal attachment with a rim, align the notch with the scope channel.
2. Advance the scope tip until it reaches the target area. Elevate the lesion by injecting sufficient saline into the target area.
3. Insert a snare through the endoscope’s instrument channel. While pressing the distal attachment against healthy tissue, use the suction function of the scope a little in order to pre-loop the snare along the circumferential rim of the distal attachment.
4. Suction the lesion into the distal attachment. Snare and ligate the suctioned mucosa.
5. Stop suctioning and observe the target site through the endoscope. Then activate the electrosurgical snare and resect the lesion.
6. Withdraw the snare. Draw the resected tissue into the distal attachment using the endoscope’s suction. Withdrawal of the endoscope and retrieval of resected tissue can be done simultaneously.
7. Spray dye on the resected area to confirm that no lesions remain.

Using a cap-mounted panendoscope, you can easily suction the area around a lesion, making it easier to effectively resect the target mucosa, regardless of its location, direction, or dimensions. Even flat lesions can be accurately targeted.

1. After spraying dye on the area where lesions are suspected, fit the distal attachment to the scope tip and secure it with medical elastic tape. If you’re using a wide oblique distal attachment with a rim, align the notch with the scope channel.
2. Advance the scope tip until it reaches the target area. Elevate the lesion by injecting sufficient saline into the target area.
3. Insert a snare through the endoscope’s instrument channel. While pressing the distal attachment against healthy tissue, use the suction function of the scope a little in order to pre-loop the snare along the circumferential rim of the distal attachment.
4. Suction the lesion into the distal attachment. Snare and ligate the suctioned mucosa.
5. Stop suctioning and observe the target site through the endoscope. Then activate the electrosurgical snare and resect the lesion.
6. Withdraw the snare. Draw the resected tissue into the distal attachment using the endoscope’s suction. Withdrawal of the endoscope and retrieval of resected tissue can be done simultaneously.
7. Spray dye on the resected area to confirm that no lesions remain.

Using a cap-mounted panendoscope, you can easily suction the area around a lesion, making it easier to effectively resect the target mucosa, regardless of its location, direction, or dimensions. Even flat lesions can be accurately targeted.

1. After spraying dye on the area where lesions are suspected, fit the distal attachment to the scope tip and secure it with medical elastic tape. If you’re using a wide oblique distal attachment with a rim, align the notch with the scope channel.
2. Advance the scope tip until it reaches the target area. Elevate the lesion by injecting sufficient saline into the target area.
3. Insert a snare through the endoscope’s instrument channel. While pressing the distal attachment against healthy tissue, use the suction function of the scope a little in order to pre-loop the snare along the circumferential rim of the distal attachment.
4. Suction the lesion into the distal attachment. Snare and ligate the suctioned mucosa.
5. Stop suctioning and observe the target site through the endoscope. Then activate the electrosurgical snare and resect the lesion.
6. Withdraw the snare. Draw the resected tissue into the distal attachment using the endoscope’s suction. Withdrawal of the endoscope and retrieval of resected tissue can be done simultaneously.
7. Spray dye on the resected area to confirm that no lesions remain.
Grasping Forceps Specifications

Olympus offers all the tools you need to succeed in tract procedures. Our commitment to EMRC is reflected in the comprehensive selection of
distinctive specifications.

- SD-6L/U-1 2.8mm Hexagonal
- SD-221L/U-25
- SD-17L/U-1
- SD-7P-1

Electrosurgical Snares Specifications

EMRC, our snares feature a loop opening than with conventional oval snares is also
result, more accurate piercing is possible.

- SD-221L-25 SnareMaster™

A sheath made of Teflon—such as in the esophagus. These attachments also facilitate
ensuring a clear view free of dye spray.

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-221L</td>
<td>1,650mm</td>
<td>2.8mm</td>
</tr>
<tr>
<td>SD-221L-25</td>
<td>1,650mm</td>
<td>2.8mm</td>
</tr>
<tr>
<td>SD-221L-1</td>
<td>1,650mm</td>
<td>2.0mm</td>
</tr>
<tr>
<td>SD-221L-25</td>
<td>1,650mm</td>
<td>2.0mm</td>
</tr>
</tbody>
</table>

- Wire Leader
- Wire

Using Jumbo grasping forceps and two short clips of different colors, four
festooning is possible.

- MH-594
- MH-593

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>MH-593</td>
<td>2,400mm</td>
<td>2.0mm</td>
</tr>
<tr>
<td>MH-594</td>
<td>2,400mm</td>
<td>2.0mm</td>
</tr>
</tbody>
</table>

- 4mm
- 4mm

- 4mm
- 4mm

- 25G
- 23G

- 25G
- 23G

- 20.0mm
- 20.0mm

- 1650mm

- pw-205v

* Available as a kit component in the United States.

- Pw-205v

<table>
<thead>
<tr>
<th>Model</th>
<th>Length</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pw-205v</td>
<td>1950mm</td>
<td>2.8mm</td>
</tr>
</tbody>
</table>

Digestive Tract

Single-channel EMR is the most commonly used EMR technique in the lower digestive tract. Since all the accessories are sterile, single-use
accessories for each procedure. Since all the accessories are sterile, single-use
accessories for each

- Use “L” length accessories for single-channel method EMR in the upper digestive tract.
- Use “U” length accessories for single-channel method EMR in the lower digestive tract.

- K-010
- K-009 D-206-05
- K-008 D-206-04
- K-007 D-206-03
- K-006 D-206-02
- K-005 D-206-01
- K-004 D-206-00
- K-003 D-206-09

- pw-205v

* pw-205v is only available as a component of EMR Kit, K-010.
Dual-Channel Endoscopes

Dual-Channel Gives You Powerful and Exceptional Performance in GI Tract Treatment

Designed especially for treatment in GI tract, dual-channel endoscopes provide one large diameter channel free for powerful suction while enabling an Endo-Therapy accessory to be inserted in another channel for treatment. Dual-Channel design also gives an optimal environment for two Endo-Therapy accessories to be used simultaneously without sacrificing the high quality performance of the endoscope.

Magnification Endoscopy

Zoom in for More Detailed Observation of the Mucous Membrane

Thanks to the incorporation of a high-resolution CCD and an improved optical system, the GIF/Q160Z/Q240Z videoscopes are able to deliver crisp, clear images with outstanding resolution. The GIF-Q160Z/Q240Z gastrointestinal videoscope provides magnification up to 115X* in the upper digestive tract while the CF-Q160Z/Q240Z colonovideoscope can zoom images of the lower digestive tract up to 150X*. Even at the highest resolution, you’ll get none of the annoying graininess produced by electronically enhanced zooms, while uniform brightness is ensured throughout the magnification range, from wide angle to telephoto.

*When images are displayed on a 20-inch monitor.